# Octal, 12-Bit, 50Msps, 1.8V ADC with Serial LVDS Outputs 


#### Abstract

General Description The MAX1437B octal, 12-bit analog-to-digital converter (ADC) features fully differential inputs, a pipelined architecture, and digital error correction incorporating a fully differential signal path. This ADC is optimized for low-power and high-dynamic performance in medical imaging instrumentation and digital communications applications. The MAX1437B operates from a 1.8 V single supply and consumes only 768 mW ( 96 mW per channel) while delivering a 70.2 dB (typ) signal-to-noise ratio (SNR) at a 5.3 MHz input frequency. In addition to low operating power, the MAX1437B features a lowpower standby mode for idle periods.

An internal 1.24 V precision bandgap reference sets the full-scale range of the ADC. A flexible reference structure allows the use of an external reference for applications requiring increased accuracy or a different input voltage range. The reference architecture is optimized for low noise. A single-ended clock controls the data-conversion process. An internal duty-cycle equalizer compensates for wide variations in clock duty cycle. An on-chip phase-locked loop (PLL) generates the high-speed serial low-voltage differential signal (LVDS) clock. The MAX1437B has self-aligned serial LVDS outputs for data, clock, and frame-alignment signals. The output data is presented in two's complement format. The MAX1437B offers a maximum sample rate of 50 Msps . This device is available in a small, $10 \mathrm{~mm} \times$ $10 \mathrm{~mm} \times 0.8 \mathrm{~mm}, 68$-pin thin QFN package with exposed pad and is specified for the extended industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$ ) temperature range.


## Applications

Ultrasound and Medical Imaging
Instrumentation
Multichannel Communications

Features

- Excellent Dynamic Performance
70.2 dB SNR at 5.3 MHz

98 dBc SFDR at 5.3 MHz
82dB Channel Isolation at 5.3 MHz

- Ultra-Low Power

96mW per Channel (Normal Operation)

- Serial LVDS Outputs
- Pin-Selectable LVDS/SLVS (Scalable Low-Voltage Signal) Mode
- LVDS Outputs Support Up to 30in FR-4 Backplane Connections
- Test Mode for Digital Signal Integrity
- Fully Differential Analog Inputs
- Wide Differential Input Voltage Range (1.4VP-P)
- On-Chip 1.24V Precision Bandgap Reference
- Clock Duty-Cycle Equalizer
- Compact, 68-Pin Thin QFN Package with Exposed Pad
- Evaluation Kit Available (Order MAX1437BEVKIT)

Ordering Information

| PART | TEMP RANGE | PIN-PACKAGE |
| :---: | :---: | :---: |
| MAX1437BETK + | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 68 Thin QFN-EP* |

+Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad.

## Octal, 12-Bit, 50Msps, 1.8V ADC with Serial LVDS Outputs

ABSOLUTE MAXIMUM RATINGS

| AVDD to GND | to +2.0 V |
| :---: | :---: |
| CVDD to GND | -0.3V to +3.6 V |
| OVDD to GND | -0.3V to +2.0V |
| IN_P, IN_N to GND | -0.3V to (VAVDD +0.3 V ) |
| CLK to GND | -0.3V to (VcVDD +0.3 V ) |
| OUT_P, OUT_N, FRAME_, |  |
| CLKOUT_ to GND | -0.3V to (VoVDD + 0.3V) |
| DT, SLVS/LVDS, LVDSTES |  |
| REFIO, REFADJ, CMOU | ..-0.3V to (VaVDD +0.3 V ) |

Continuous Power Dissipation ( $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$ ) 68 -Pin Thin QFN $10 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ (derated $70 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ). $\qquad$ .4000 mW Operating Temperature Range ........................... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Maximum Junction Temperature $+150^{\circ} \mathrm{C}$ Storage Temperature Range .. $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s)
$\qquad$
$\qquad$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ELECTRICAL CHARACTERISTICS

$\left(V_{\text {AVDD }}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {OVDD }}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {CVDD }}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0\right.$, external $\mathrm{V}_{\text {REFIO }}=1.24 \mathrm{~V}, \mathrm{C}_{\text {REFIO }}$ to $\mathrm{GND}=0.1 \mu \mathrm{~F} \| 1.0 \mu \mathrm{~F}, \mathrm{C}_{\text {REFP }}$ to $\mathrm{GND}=$ $10 \mu F$, CREFN to GND $=10 \mu F$, fCLK $=50 \mathrm{MHz}\left(50 \%\right.$ duty cycle), $V_{D T}=0, T_{A}=T_{\text {MIN }}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DC ACCURACY (Note 2) |  |  |  |  |  |  |
| Resolution | N |  | 12 |  |  | Bits |
| Integral Nonlinearity | INL |  |  | $\pm 0.3$ | $\pm 2.5$ | LSB |
| Differential Nonlinearity | DNL | No missing codes over temperature |  | $\pm 0.25$ | $\pm 1$ | LSB |
| Offset Error |  |  |  |  | $\pm 0.5$ | \%FS |
| Gain Error |  |  | -3 | $\pm 0.5$ | +2 | \%FS |
| ANALOG INPUTS (IN_P, IN_N) |  |  |  |  |  |  |
| Input Differential Range | VID | Differential input |  | 1.4 |  | VP-P |
| Common-Mode Voltage Range | VCMO |  |  | 0.76 |  | V |
| Common-Mode Voltage Range Tolerance |  | (Note 3) |  | $\pm 50$ |  | mV |
| Differential Input Impedance | RIN | Switched capacitor load |  | 2 |  | $\mathrm{k} \Omega$ |
| Differential Input Capacitance | CIN |  |  | 12.5 |  | pF |
| CONVERSION RATE |  |  |  |  |  |  |
| Maximum Conversion Rate | fsmax |  | 50 |  |  | MHz |
| Minimum Conversion Rate | fSMIN |  |  | 4.0 |  | MHz |
| Data Latency |  |  |  | 6.5 |  | Cycles |
| DYNAMIC CHARACTERISTICS (differential inputs, 4096-point FFT) (Note 2) |  |  |  |  |  |  |
| Signal-to-Noise Ratio | SNR | $\mathrm{f} / \mathrm{N}=5.3 \mathrm{MHz}$ at -0.5 dBFS |  | 70.2 |  | dB |
|  |  | $\mathrm{fiN}^{\text {N }}=20 \mathrm{MHz}$ at -0.5 dBFS | 67 | 70.2 |  |  |
| Signal-to-Noise and Distortion | SINAD | $\mathrm{f} / \mathrm{N}=5.3 \mathrm{MHz}$ at -0.5 dBFS |  | 70.2 |  | dB |
|  |  | $\mathrm{fiN}^{2}=20 \mathrm{MHz}$ at -0.5 dBFS | 67 | 70.1 |  |  |
| Effective Number of Bits | ENOB | $\mathrm{fIN}=5.3 \mathrm{MHz}$ at -0.5 dBFS |  | 11.4 |  | Bits |
|  |  | $\mathrm{fin}^{\text {I }}=20 \mathrm{MHz}$ at -0.5 dBFS | 10.8 | 11.4 |  |  |
| Spurious-Free Dynamic Range | SFDR | $\mathrm{fIN}^{\mathrm{N}}=5.3 \mathrm{MHz}$ at -0.5 dBFS |  | 98 |  | dBc |
|  |  | $\mathrm{f}_{\mathrm{IN}}=20 \mathrm{MHz}$ at -0.5 dBFS | 79 | 93 |  |  |

## Octal, 12-Bit, 50Msps, 1.8V ADC with Serial LVDS Outputs

## ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{\text {AVDD }}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{GVDD}}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {CVDD }}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0\right.$, external $\mathrm{V}_{\text {REFIO }}=1.24 \mathrm{~V}, \mathrm{C}_{\text {REFIO }}$ to $\mathrm{GND}=0.1 \mu \mathrm{~F} \| 1.0 \mu \mathrm{~F}, \mathrm{C}_{\text {REFP }}$ to $\mathrm{GND}=$ $10 \mu F, C_{\text {REFN }}$ to GND $=10 \mu F$, $\mathrm{f}_{\text {CLK }}=50 \mathrm{MHz}\left(50 \%\right.$ duty cycle), $V_{D T}=0, T_{A}=T_{\text {MIN }}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total Harmonic Distortion | THD | $\mathrm{f} / \mathrm{N}=5.3 \mathrm{MHz}$ at -0.5 dBFS |  | -96 |  | dBc |
|  |  | $\mathrm{fiN}^{2}=20 \mathrm{MHz}$ at -0.5 dBFS |  | -93 | -78 |  |
| Intermodulation Distortion | IMD | $\begin{aligned} & \mathrm{f}_{1}=5.3 \mathrm{MHz} \text { at }-6.5 \mathrm{dBFS} \\ & \mathrm{f}_{2}=6.3 \mathrm{MHz} \text { at }-6.5 \mathrm{dBFS} \end{aligned}$ |  | 90.7 |  | dBc |
| Third-Order Intermodulation | IM3 | $\begin{aligned} & \mathrm{f}_{1}=5.3 \mathrm{MHz} \text { at }-6.5 \mathrm{dBFS} \\ & \mathrm{f}_{2}=6.3 \mathrm{MHz} \text { at }-6.5 \mathrm{dBFS} \end{aligned}$ |  | 98.7 |  | dBc |
| Aperture Jitter | $\mathrm{t}_{\mathrm{AJ}}$ | Figure 10 |  | < 0.4 |  | pSRMS |
| Aperture Delay | $t_{\text {AD }}$ | Figure 10 |  | 1 |  | ns |
| Small-Signal Bandwidth | SSBW | Input at -20dBFS |  | 100 |  | MHz |
| Full-Power Bandwidth | LSBW | Input at -0.5dBFS |  | 100 |  | MHz |
| Output Noise |  | IN_P = IN_N |  | 0.44 |  | LSBRMS |
| Overrange Recovery Time | tor | RS $=25 \Omega, C S=50 \mathrm{pF}$ |  | 1 |  | Clock cycle |
| INTERNAL REFERENCE |  |  |  |  |  |  |
| REFADJ Internal Reference-Mode Enable Voltage |  | (Note 4) |  |  | 0.1 | V |
| REFADJ Low-Leakage Current |  |  |  | 1.5 |  | mA |
| REFIO Output Voltage | $V_{\text {REFIO }}$ |  | 1.18 | 1.24 | 1.30 | V |
| Reference Temperature Coefficient | TCrefio |  |  | 120 |  | ppm/ ${ }^{\circ} \mathrm{C}$ |
| EXTERNAL REFERENCE |  |  |  |  |  |  |
| REFADJ External ReferenceMode Enable Voltage |  | (Note 4) | $\begin{array}{r} \mathrm{V}_{\text {AVDD }} \\ 0.1 \mathrm{~V} \end{array}$ |  |  | V |
| REFADJ High-Leakage Current |  |  |  | 200 |  | $\mu \mathrm{A}$ |
| REFIO Input Voltage |  |  |  | 1.24 |  | V |
| REFIO Input Voltage Tolerance |  |  |  | $\pm 5$ |  | \% |
| REFIO Input Current | IREFIO |  |  | < 1 |  | $\mu \mathrm{A}$ |
| COMMON-MODE OUTPUT (CMOUT) |  |  |  |  |  |  |
| CMOUT Output Voltage | VCMOUT |  |  | 0.76 |  | V |
| CLOCK INPUT (CLK) |  |  |  |  |  |  |
| Input High Voltage | VCLKH |  | $\begin{gathered} 0.8 \times \\ V_{\text {CVDD }} \end{gathered}$ |  |  | V |
| Input Low Voltage | VCLKL |  |  |  | $\begin{gathered} 0.2 \times \\ V_{\mathrm{CVDD}} \end{gathered}$ | V |
| Clock Duty Cycle |  |  |  | 50 |  | \% |
| Clock Duty-Cycle Tolerance |  |  |  | $\pm 30$ |  | \% |
| Input Leakage | Dİn | Input at GND |  |  | 5 | $\mu \mathrm{A}$ |
|  |  | Input at V ${ }_{\text {AVDD }}$ |  |  | 80 |  |
| Input Capacitance | DCIN |  |  | 5 |  | pF |

## Octal, 12-Bit, 50Msps, 1.8V ADC with Serial LVDS Outputs

## ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{\text {AVDD }}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {OVDD }}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {CVDD }}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0\right.$, external $\mathrm{V}_{\text {REFIO }}=1.24 \mathrm{~V}$, CREFIO to $\mathrm{GND}=0.1 \mu \mathrm{~F} \| 1.0 \mu \mathrm{~F}, \mathrm{C}_{\text {REFP }}$ to $\mathrm{GND}=$ $10 \mu F, C_{\text {REFN }}$ to GND $=10 \mu F$, fCLK $=50 \mathrm{MHz}\left(50 \%\right.$ duty cycle), $V_{D T}=0, T_{A}=T_{\text {MIN }}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)


## Octal, 12-Bit, 50Msps, 1.8V ADC with Serial LVDS Outputs

## ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{\text {AVDD }}=1.8 \mathrm{~V}, \operatorname{VoVDD}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {CVDD }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {GND }}=0\right.$, external $\mathrm{V}_{\text {REFIO }}=1.24 \mathrm{~V}$, CREFIO to $\mathrm{GND}=0.1 \mu \mathrm{~F} \| 1.0 \mu \mathrm{~F}$, CREFP to $\mathrm{GND}=$ $10 \mu F$, CREFN to GND $=10 \mu F$, fCLK $=50 \mathrm{MHz}\left(50 \%\right.$ duty cycle), $V_{D T}=0, T_{A}=T_{\text {MIN }}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TIMING CHARACTERISTICS (Note 5) |  |  |  |  |  |
| Data Valid to CLKOUT Rise/Fall | tod | Figure 5 (Note 6) | $\begin{gathered} \text { (tSAMPLE/24) } \\ -0.15 \end{gathered}$ | $\begin{gathered} \text { (tSAMPLE/24) } \\ +0.15 \end{gathered}$ | ns |
| CLKOUT Output-Width High | tch | Figure 5 | tSAMPLE/12 |  | ns |
| CLKOUT Output-Width Low | tCL | Figure 5 | tSAMPLE/12 |  | ns |
| FRAME Rise to CLKOUT Rise | tCF | Figure 4 (Note 6) | $\begin{gathered} \text { (tsAMPLE/24) } \\ -0.15 \end{gathered}$ | $\begin{gathered} \text { (tSAMPLE/24) } \\ +0.15 \end{gathered}$ | ns |
| Sample CLK Rise to FRAME Rise | tSF | Figure 4 (Note 6) | $\begin{gathered} \text { (tSAMPLE/2) } \\ +1.1 \end{gathered}$ | $\begin{gathered} \text { (tSAMPLE/2) } \\ +2.6 \end{gathered}$ | ns |
| Crosstalk |  | (Note 2) | -75 |  | dB |
| Gain Matching | CGM | $\mathrm{fin}=5.3 \mathrm{MHz}$ (Note 2) | $\pm 0.1$ |  | dB |
| Phase Matching | CPM | $\mathrm{fin}=5.3 \mathrm{MHz}$ (Note 2) | $\pm 0.25$ |  | Degrees |

Note 1: Specifications at $\mathrm{T}_{\mathrm{A}} \geq+25^{\circ} \mathrm{C}$ are guaranteed by production testing. Specifications at $\mathrm{T}_{\mathrm{A}}<+25^{\circ} \mathrm{C}$ are guaranteed by design and characterization and not subject to production testing.
Note 2: See definition in the Parameter Definitions section at the end of this data sheet.
Note 3: See the Common-Mode Output (CMOUT) section.
Note 4: Connect REFADJ to GND directly to enable internal reference mode. Connect REFADJ to AVDD directly to disable the internal bandgap reference and enable external reference mode.
Note 5: Data valid to CLKOUT rise/fall timing is measured from $50 \%$ of data output level to $50 \%$ of clock output level.
Note 6: Guaranteed by design and characterization. Not subject to production testing.

## Typical Operating Characteristics

$\left(V_{\text {AVDD }}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OVDD}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CVDD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0\right.$, internal reference, differential input at $-0.5 \mathrm{dBFS}, \mathrm{f}_{\mathrm{IN}}=5.3 \mathrm{MHz}, \mathrm{f}_{\mathrm{CLK}}=$ 50 MHz ( $50 \%$ duty cycle), $\mathrm{V}_{\mathrm{DT}}=0, \mathrm{C}_{\mathrm{LOAD}}=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)


## Octal, 12-Bit, 50Msps, 1.8V ADC with Serial LVDS Outputs

$\left(V_{\text {AVDD }}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {OVDD }}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {CVDD }}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0\right.$, internal reference, differential input at $-0.5 \mathrm{dBFS}, \mathrm{f}_{\mathrm{IN}}=5.3 \mathrm{MHz}, \mathrm{f}_{\mathrm{CLK}}=$ $50 \mathrm{MHz}\left(50 \%\right.$ duty cycle), $\mathrm{V}_{\mathrm{DT}}=0, \mathrm{CLOAD}=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)


SIGNAL-TO-NOISE PLUS DISTORTION vs. ANALOG INPUT FREQUENCY


SIGNAL-TO-NOISE RATIO vs. ANALOG INPUT POWER


BANDWIDTH
vs. ANALOG INPUT FREQUENCY


TOTAL HARMONIC DISTORTION vs. ANALOG INPUT FREQUENCY


SIGNAL-TO-NOISE PLUS DISTORTION vs. ANALOG INPUT POWER


SIGNAL-TO-NOISE RATIO vs. ANALOG INPUT FREQUENCY


SPURIOUS-FREE DYNAMIC RANGE
vs. ANALOG INPUT FREQUENCY


TOTAL HARMONIC DISTORTION vs. ANALOG INPUT POWER


## Octal, 12-Bit, 50Msps, 1.8V ADC with Serial LVDS Outputs

Typical Operating Characteristics (continued)
$\left(V_{\text {AVDD }}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {OVDD }}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {CVDD }}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0\right.$, internal reference, differential input at $-0.5 \mathrm{dBFS}, \mathrm{f}_{\mathrm{I}}=5.3 \mathrm{MHz}, \mathrm{f}_{\mathrm{CLK}}=$ $50 \mathrm{MHz}\left(50 \%\right.$ duty cycle), $\mathrm{V}_{\mathrm{DT}}=0, \mathrm{CLOAD}=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)



SIGNAL-TO-NOISE PLUS DISTORTION vs. DUTY CYCLE


SIGNAL-TO-NOISE RATIO
vs. SAMPLING RATE


SPURIOUS-FREE DYNAMIC RANGE vs. SAMPLING RATE


TOTAL HARMONIC DISTORTION
vs. DUTY CYCLE


SIGNAL-TO-NOISE PLUS DISTORTION
vs. SAMPLING RATE


SIGNAL-TO-NOISE RATIO
vs. DUTY CYCLE


SPURIOUS-FREE DYNAMIC RANGE vs. DUTY CYCLE


## Octal, 12-Bit, 50Msps, 1.8V ADC with Serial LVDS Outputs

## Typical Operating Characteristics (continued)

$\left(V_{\text {AVDD }}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {OVDD }}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {CVDD }}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0\right.$, internal reference, differential input at $-0.5 \mathrm{dBFS}, \mathrm{f}_{\mathrm{I}}=5.3 \mathrm{MHz}, \mathrm{f}_{\mathrm{CLK}}=$ 50 MHz ( $50 \%$ duty cycle), $\mathrm{V}_{\mathrm{DT}}=0, \mathrm{C}_{\mathrm{LOAD}}=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)


SPURIOUS-FREE DYNAMIC RANGE
vs. TEMPERATURE


OFFSET ERROR
vs. TEMPERATURE


SIGNAL-TO-NOISE PLUS DISTORTION vs. TEMPERATURE


SUPPLY CURRENT
vs. SAMPLING RATE (AVDD)


GAIN ERROR
vs. TEMPERATURE


TOTAL HARMONIC DISTORTION
vs. TEMPERATURE


SUPPLY CURRENT
vs. SAMPLING RATE (OVDD)


INTEGRAL NONLINEARITY
vs. DIGITAL OUTPUT CODE


## Octal, 12-Bit, 50Msps, 1.8V ADC with Serial LVDS Outputs

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\text {AVDD }}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {OVDD }}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {CVDD }}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0\right.$, internal reference, differential input at $-0.5 \mathrm{dBFS}, \mathrm{f}_{\mathrm{I}}=5.3 \mathrm{MHz}, \mathrm{f}_{\mathrm{CLK}}=$ $50 \mathrm{MHz}\left(50 \%\right.$ duty cycle), $\mathrm{V}_{\mathrm{DT}}=0, \mathrm{CLOAD}=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)



NTERNAL REFERENCE VOLTAGE
vs. TEMPERATURE


CMOUT VOLTAGE
vs. SUPPLY VOLTAGE


CMOUT VOLTAGE
vs. TEMPERATURE




## Octal, 12-Bit, 50Msps, 1.8V ADC with Serial LVDS Outputs

| PIN | NAME | FUNCTION |
| :---: | :---: | :---: |
| 1 | IN1P | Channel 1 Positive Input |
| 2 | IN1N | Channel 1 Negative Input |
| 3 | IN2P | Channel 2 Positive Input |
| 4 | IN2N | Channel 2 Negative Input |
| 5 | IN3P | Channel 3 Positive Input |
| 6 | IN3N | Channel 3 Negative Input |
| $\begin{gathered} 7,8,10,11 \\ 25,26,27,60 \end{gathered}$ | AVDD | Analog Power Input. Connect AVDD to a 1.7 V to 1.9 V power supply. Bypass AVDD to GND with a $0.1 \mu \mathrm{~F}$ capacitor as close as possible to the device. Bypass the AVDD power plane to the GND plane with a bulk capacitor of at least $2.2 \mu \mathrm{~F}$. Connect all AVDD pins to the same potential. |
| 9, 18, 68 | GND | Ground. Connect all GND pins to the same potential. |
| 12 | IN4P | Channel 4 Positive Input |
| 13 | IN4N | Channel 4 Negative Input |
| 14 | IN5P | Channel 5 Positive Input |
| 15 | IN5N | Channel 5 Negative Input |
| 16 | IN6P | Channel 6 Positive Input |
| 17 | IN6N | Channel 6 Negative Input |
| 19 | IN7P | Channel 7 Positive Input |
| 20 | IN7N | Channel 7 Negative Input |
| 21 | DT | Double Termination Select. Force DT high to select the internal $100 \Omega$ termination between the differential output pairs. Force DT low to select no internal output termination. |
| 22 | SLVS/LVDS | Differential Output Signal Format Select Input. Force SLVS/LVDS high to select SLVS outputs. Force SLVS/LVDS low to select LVDS outputs. |
| 23 | CVDD | Clock Power Input. Connect CVDD to a 1.7 V to 3.5 V supply. Bypass CVDD to GND with a $0.1 \mu \mathrm{~F}$ capacitor in parallel with a capacitor of at least $2.2 \mu \mathrm{~F}$. Install the bypass capacitors as close as possible to the device. |
| 24 | CLK | Single-Ended CMOS Clock Input |
| $\begin{gathered} 28,31,34,39 \\ 44,49,52 \end{gathered}$ | OVDD | Output Driver Power Input. Connect OVDD to a 1.7 V to 1.9 V power supply. Bypass OVDD to GND with a $0.1 \mu \mathrm{~F}$ capacitor as close as possible to the device. Bypass the OVDD power plane to the GND plane with a bulk capacitor of at least $2.2 \mu \mathrm{~F}$. Connect all OVDD pins to the same potential. |
| 29 | OUT7N | Channel 7 Negative LVDS/SLVS Output |
| 30 | OUT7P | Channel 7 Positive LVDS/SLVS Output |
| 32 | OUT6N | Channel 6 Negative LVDS/SLVS Output |
| 33 | OUT6P | Channel 6 Positive LVDS/SLVS Output |
| 35 | OUT5N | Channel 5 Negative LVDS/SLVS Output |
| 36 | OUT5P | Channel 5 Positive LVDS/SLVS Output |
| 37 | OUT4N | Channel 4 Negative LVDS/SLVS Output |
| 38 | OUT4P | Channel 4 Positive LVDS/SLVS Output |
| 40 | FRAMEN | Negative Frame-Alignment LVDS/SLVS Output. A rising edge on the differential FRAME output aligns to a valid DO in the output data stream. |
| 41 | FRAMEP | Positive Frame-Alignment LVDS/SLVS Output. A rising edge on the differential FRAME output aligns to a valid DO in the output data stream. |
| 42 | CLKOUTN | Negative LVDS/SLVS Serial Clock Output |

# Octal, 12-Bit, 50Msps, 1.8V ADC with Serial LVDS Outputs 

Pin Description (continued)

| PIN | NAME | FUNCTION |
| :---: | :---: | :---: |
| 43 | CLKOUTP | Positive LVDS/SLVS Serial Clock Output |
| 45 | OUT3N | Channel 3 Negative LVDS/SLVS Output |
| 46 | OUT3P | Channel 3 Positive LVDS/SLVS Output |
| 47 | OUT2N | Channel 2 Negative LVDS/SLVS Output |
| 48 | OUT2P | Channel 2 Positive LVDS/SLVS Output |
| 50 | OUT1N | Channel 1 Negative LVDS/SLVS Output |
| 51 | OUT1P | Channel 1 Positive LVDS/SLVS Output |
| 53 | OUTON | Channel 0 Negative LVDS/SLVS Output |
| 54 | OUTOP | Channel 0 Positive LVDS/SLVS Output |
| 55 | LVDSTEST | LVDS Test Pattern Enable. Force LVDSTEST high to enable the output test pattern, 000010111101. As with the analog conversion results, the test pattern data are output LSB first. Force LVDSTEST low for normal operation. |
| 56 | STBY | Standby Input. Force STBY high to put the MAX1437B into standby mode. In standby, the reference circuitry remains active. Force STBY low for normal operation. |
| 57 | PLL3 | PLL Control Input 3. See Table 1 for details. |
| 58 | PLL2 | PLL Control Input 2. See Table 1 for details. |
| 59 | PLL1 | PLL Control Input 1. See Table 1 for details. |
| 61 | REFN | Negative Reference Bypass Output. Connect a capacitor of at least $1 \mu \mathrm{~F}$ ( $10 \mu \mathrm{~F}$ typ) between REFP and REFN, and connect a capacitor of at least $1 \mu \mathrm{~F}$ ( $10 \mu \mathrm{~F}$ typ) between REFN and GND. Place the capacitors as close as possible to the device on the same side of the PCB as the MAX1437B. |
| 62 | REFP | Positive Reference Bypass Output. Connect a capacitor of at least $1 \mu \mathrm{~F}$ ( $10 \mu \mathrm{~F}$ typ) between REFP and REFN, and connect a capacitor of at least $1 \mu \mathrm{~F}$ ( $10 \mu \mathrm{~F}$ typical) between REFN and GND. Place the capacitors as close as possible to the device on the same side of the PCB as the MAX1437B. |
| 63 | REFIO | Reference Input/Output. For internal reference operation (REFADJ = GND), the reference output voltage is 1.24 V . For external reference operation (REFADJ = AVDD), apply a stable reference voltage at REFIO. Bypass to GND with a capacitor of at least $0.1 \mu \mathrm{~F}$. |
| 64 | REFADJ | Internal/External Reference Mode Select and Reference Adjust Input. For internal reference, connect REFADJ to GND. For external reference, connect REFADJ to AVDD. For adjusting the reference, see the Full-Scale Range Adjustments Using the Internal Reference section. |
| 65 | CMOUT | Common-Mode Reference Voltage Output. CMOUT outputs the input common-mode voltage for DCcoupled applications. Bypass CMOUT to GND with a capacitor of at least $0.1 \mu \mathrm{~F}$. |
| 66 | INOP | Channel 0 Positive Input |
| 67 | INON | Channel 0 Negative Input |
| - | EP | Exposed Pad. Internally connected to GND. Connect EP to a large ground plane for maximum thermal performance. Must be connected to GND. |

## Octal, 12-Bit, 50Msps, 1.8V ADC with Serial LVDS Outputs

Functional Diagram


## Detailed Description

The MAX1437B ADC features fully differential inputs, a pipelined architecture, and digital error correction for high-speed signal conversion. The ADC pipeline architecture moves the samples taken at the inputs through the pipeline stages every half clock cycle. The converted digital results are serialized and sent through the LVDS/SLVS output drivers. The total clock-cycle latency from input to output is 6.5 clock cycles.

The MAX1437B offers 8 separate fully differential channels with synchronized inputs and outputs. Global standby minimizes power consumption.

## Input Circuit

Figure 1 displays a simplified diagram of the input T/H circuits. In track mode, switches S1, S2a, S2b, S4a, S4b, S5a, and S5b are closed. The fully differential circuits sample the input signals onto the two capacitors (C2a and C2b) through switches S4a and S4b. S2a and S2b set the common mode for the operational transconductance amplifier (OTA), and open simultaneously with S1, sampling the input waveform. Switches S4a, S4b, S5a, and S5b are then opened before switches S3a and S3b connect capacitors C1a and C1b to the output of the amplifier and switch S4c is closed. The resulting differential voltages are held on capacitors C2a and C2b. The amplifiers charge capacitors C1a and C1b to the same values originally held on C2a and C2b. These values are

# Octal, 12-Bit, 50Msps, 1.8V ADC with Serial LVDS Outputs 



Figure 1. Internal Input Circuit
then presented to the first-stage quantizers and isolate the pipelines from the fast-changing inputs. Analog inputs, IN_P to IN_N, are driven differentially. For differential inputs, balance the input impedance of IN_P and IN_N for optimum performance.

## Reference Configurations (REFIO, REFADJ, REFP, and REFN)

The MAX1437B provides an internal 1.24 V bandgap reference or can be driven with an external reference voltage. The full-scale analog differential input range is $\pm$ FSR. FSR (full-scale range) is given by the following equation:

$$
\mathrm{FSR}=\frac{\left(0.700 \times \mathrm{V}_{\text {REFIO }}\right)}{1.24 \mathrm{~V}}
$$

where VREFIO is the voltage at REFIO, generated internally or externally. For a VREFIO $=1.24 \mathrm{~V}$, the full-scale input range is $\pm 700 \mathrm{mV}$ ( $1.4 \mathrm{VP-P}$ ).

## Internal Reference Mode

Connect REFADJ to GND to use the internal bandgap reference directly. The internal bandgap reference generates VREFIO to be 1.24 V with a $120 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient in internal reference mode. Connect an external $\geq 0.1 \mu \mathrm{~F}$ bypass capacitor from REFIO to GND for stability. REFIO sources up to $200 \mu \mathrm{~A}$ and sinks up to $200 \mu \mathrm{~A}$ for external circuits, and REFIO has a $75 \mathrm{mV} / \mathrm{mA}$ load regulation. Putting the MAX1437B into standby mode turns off all circuitry except the reference circuit, allowing the converter to power up faster when the ADC exits standby with a high-to-low transitional signal on STBY. The internal circuits of the MAX1437B require $200 \mu$ s to power up and settle when the converter exits standby mode.
To compensate for gain errors or to decrease or increase the ADC's FSR, add an external resistor between REFADJ and GND or REFADJ and REFIO. This adjusts the internal reference value of the MAX1437B by up to $\pm 5 \%$ of its nominal value. See the Full-Scale Range Adjustments Using the Internal Reference section.

# Octal, 12-Bit, 50Msps, 1.8V ADC with Serial LVDS Outputs 

Connect $\geq 1 \mu \mathrm{~F}$ ( $10 \mu \mathrm{~F}$ typ) capacitors to GND from REFP and REFN and a $\geq 1 \mu \mathrm{~F}$ ( $10 \mu \mathrm{~F}$ typ) capacitor between REFP and REFN as close to the device as possible on the same side of the PCB.

## External Reference Mode

The external reference mode allows for more control over the MAX1437B reference voltage and allows multiple converters to use a common reference. Connect REFADJ to AVDD to disable the internal reference. Apply a stable 1.18 V to 1.30 V source at REFIO. Bypass REFIO to GND with $a \geq 0.1 \mu \mathrm{~F}$ capacitor. The REFIO input impedance is $>1 \mathrm{M} \Omega$.

## Clock Input (CLK)

The MAX1437B accepts a CMOS-compatible clock signal with a wide $20 \%$ to $80 \%$ input clock duty cycle. Drive CLK with an external single-ended clock signal. Figure 2 shows the simplified clock input diagram.
Low clock jitter is required for the specified SNR performance of the MAX1437B. Analog input sampling occurs on the rising edge of CLK, requiring this edge to provide the lowest possible jitter. Jitter limits the maximum SNR performance of any ADC according to the following relationship:

$$
\mathrm{SNR}=20 \times \log \left(\frac{1}{2 \times \pi \times f_{\mathrm{IN}} \times t_{J}}\right)
$$

where $\mathrm{fiN}_{\mathrm{N}}$ represents the analog input frequency and $\mathrm{t} J$ is the total system clock jitter.

PLL Inputs (PLL1, PLL2, PLL3) The MAX1437B features a PLL that generates an output clock signal with six times the frequency of the input clock. The output clock signal is used to clock data out of the MAX1437B (see the System Timing Requirements


Figure 2. Clock Input Circuitry

Table 1. PLL1, PLL2, and PLL3 Configuration Table

| PLL1 | PLL2 | PLL3 | INPUT CLOCK RANGE <br> (MHz) |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | MAX |
| 0 | 0 | 0 | 45.0 | 50.0 |
| 0 | 0 | 1 | 32.5 | 45.0 |
| 0 | 1 | 0 | 22.5 | 32.5 |
| 0 | 1 | 1 | 16.3 | 22.5 |
| 1 | 0 | 0 | 11.3 | 16.3 |
| 1 | 0 | 1 | 8.1 | 11.3 |
| 1 | 1 | 0 | 5.6 | 8.1 |
| 1 | 1 | 1 | 4.0 | 5.6 |

section). Set the PLL1, PLL2, and PLL3 pins according to the input clock range provided in Table 1.

## System Timing Requirements

Figure 3 shows the relationship between the analog inputs, input clock, frame-alignment output, serial-clock output, and serial-data output. The differential analog input (IN_P and IN_N) is sampled on the rising edge of the CLK signal and the resulting data appears at the digital outputs 6.5 clock cycles later. Figure 4 provides a detailed, two-conversion timing diagram of the relationship between the inputs and the outputs.

## Clock Output (CLKOUTP, CLKOUTN)

 The MAX1437B provides a differential clock output that consists of CLKOUTP and CLKOUTN. As shown in Figure 4, the serial output data is clocked out of the MAX1437B on both edges of the clock output. The frequency of the output clock is six times the frequency of CLK.Frame-Alignment Output (FRAMEP, FRAMEN)
The MAX1437B provides a differential frame-alignment signal that consists of FRAMEP and FRAMEN. As shown in Figure 4, the rising edge of the frame-alignment signal corresponds to the first bit (D0) of the 12bit serial data stream. The frequency of the framealignment signal is identical to the frequency of the input clock.

## Serial Output Data (OUT_P, OUT_N)

The MAX1437B provides its conversion results through individual differential outputs consisting of OUT_P and OUT_N. The results are valid 6.5 input clock ${ }^{\text {cheles }}$ after the sample is taken. As shown in Figure 3, the output data is clocked out on both edges of the output clock, LSB (D0) first. Figure 5 provides the detailed ser-ial-output timing diagram.

## Octal, 12-Bit, 50Msps, 1.8V ADC with Serial LVDS Outputs



Figure 3. Global Timing Diagram


Figure 4. Detailed Two-Conversion Timing Diagram


Figure 5. Serialized-Output Detailed Timing Diagram

## Octal, 12-Bit, 50Msps, 1.8V ADC with Serial LVDS Outputs

Table 2. Output Code Table (VREFIO $=1.24 \mathrm{~V}$ )

| TWO'S-COMPLEMENT DIGITAL OUTPUT CODE |  |  | $\begin{gathered} \mathrm{V}_{\text {IN_P }}-\mathrm{V}_{\text {IN_N }}(\mathrm{mV}) \\ \left(\mathrm{V}_{\text {REFIO }}=1.24 \mathrm{~V}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { BINARY } \\ & \text { D11 } \rightarrow \text { DO } \end{aligned}$ | HEXADECIMAL EQUIVALENT OF D11 $\rightarrow$ D0 | DECIMAL EQUIVALENT OF D11 $\rightarrow$ D0 |  |
| 011111111111 | 0x7FF | +2047 | +699.66 |
| 011111111110 | 0x7FE | +2046 | +699.32 |
|  |  |  |  |
| 000000000001 | 0x001 | +1 | +0.34 |
| 000000000000 | 0x000 | 0 | 0 |
| 111111111111 | 0xFFF | -1 | -0.34 |
|  |  |  |  |
| 100000000001 | 0x801 | -2047 | -699.66 |
| 100000000000 | 0x800 | -2048 | -700.00 |



Figure 6. Two's-Complement Transfer Function

## Output Data Transfer Function

The MAX1437B output data format is two's complement. The following equation, Table 2, and Figure 6 define the relationship between the digital output and the analog input:

$$
V_{I N_{-} P}-V_{I N_{-} N}=F S R \times 2 \times \frac{C O D E_{10}}{4096}
$$

where $\mathrm{CODE}_{10}$ is the decimal equivalent of the digital output code as shown in Table 2.

Keep the capacitive load on the MAX1437B digital outputs as low as possible.

LVDS and SLVS Selection (SLVS/LVDS)
Drive SLVS/LVDS low for LVDS or drive SLVS/LVDS high for SLVS levels at the MAX1437B outputs (OUT_P, OUT_N, CLKOUTP, CLKOUTN, FRAMEP, and FRAMEN). For SLVS levels, enable double-termination by driving DT high. See the Electrical Characteristics table for LVDS and SLVS output voltage levels.

# Octal, 12-Bit, 50Msps, 1.8V ADC with Serial LVDS Outputs 

## LVDS Test Pattern (LVDSTEST)

Drive LVDSTEST high to enable the output test pattern on all LVDS or SLVS output channels. The output test pattern is 00001011 1101. Drive LVDSTEST low for normal operation (test pattern disabled).

Common-Mode Output (CMOUT) CMOUT provides a common-mode reference for DCcoupled analog inputs. If the input is DC-coupled, match the output common-mode voltage of the circuit driving the MAX1437B to the output voltage at VCMOUT to within $\pm 50 \mathrm{mV}$. It is recommended that the output common-mode voltage of the driving circuit be derived from CMOUT.

Double Termination (DT)
The MAX1437B offers an optional, internal $100 \Omega$ termination between the differential output pairs (OUT_P and OUT_N, CLKOUTP and CLKOUTN, FRAMEP and FRAMEN). In addition to the termination at the end of the line, a second termination directly at the outputs helps eliminate unwanted reflections down the line. This feature is useful in applications where trace lengths are long (> 5in) or with mismatched impedance. Drive DT high to select double-termination, or drive DT low to disconnect the internal termination resistor (single-termination). Selecting double-termination increases the OVDD supply current (see Figure 7).

Standby Mode The MAX1437B offers a standby mode to efficiently use power by transitioning to a low-power state when conversions are not required. STBY controls the standby mode of all channels and the internal reference circuitry. The reference does not power down in standby mode. Drive STBY high to enable standby. In standby mode, the output impedance of all of the LVDS/SLVS outputs is approximately $342 \Omega$, if DT is low. The output impedance of the differential LVDS/SLVS outputs is $100 \Omega$ when DT is high. See the Electrical Characteristics table for typical supply currents during standby. The following list shows the state of the analog inputs and digital outputs in standby mode:

- IN_P, IN_N analog inputs are disconnected from the internal input amplifier
- Reference circuit remains active
- OUT_P, OUT_N, CLKOUTP, CLKOUTN, FRAMEP, and FRAMEN have approximately $342 \Omega$ between the output pairs when DT is low. When DT is high, the differential output pairs have $100 \Omega$ between each pair.
When operating in internal reference mode, the MAX1437B requires 200 $\mu$ s to power up and settle when


Figure 7. Double Termination
the converter exits standby mode. To exit standby mode, STBY, the applied control signal must transition from high to low. When using an external reference, the wakeup time is dependent on the external reference drivers.

## Applications Information

## Full-Scale Range Adjustments Using the Internal Reference

The MAX1437B supports a full-scale adjustment range of $10 \%( \pm 5 \%)$. To decrease the full-scale range, add a $25 \mathrm{k} \Omega$ to $250 \mathrm{k} \Omega$ external resistor or potentiometer (RADJ) between REFADJ and GND. To increase the full-scale range, add a $25 \mathrm{k} \Omega$ to $250 \mathrm{k} \Omega$ resistor between REFADJ and REFIO. Figure 8 shows the two possible configurations.
The following equations provide the relationship between RADJ and the change in the analog full-scale range:

$$
\mathrm{FSR}=0.7 \mathrm{~V}\left(1+\frac{1.25 \mathrm{k} \Omega}{\mathrm{R}_{\mathrm{ADJ}}}\right)
$$

for RADJ connected between REFADJ and REFIO, and:

$$
\mathrm{FSR}=0.7 \mathrm{~V}\left(1-\frac{1.25 \mathrm{k} \Omega}{\mathrm{R}_{\mathrm{ADJ}}}\right)
$$

for RADJ connected between REFADJ and GND.

## Octal, 12-Bit, 50Msps, 1.8V ADC with Serial LVDS Outputs



Figure 8. Circuit Suggestions to Adjust the ADC's Full-Scale Range

## Using Transformer Coupling

An RF transformer (Figure 9) provides an excellent solution to convert a single-ended input source signal to a fully differential signal. The MAX1437B input com-mon-mode voltage is internally biased to 0.76 V (typ) with fCLK $=50 \mathrm{MHz}$. Although a 1:1 transformer is shown, a step-up transformer can be selected to reduce the drive requirements. A reduced signal swing from the input driver, such as an op amp, can also improve the overall distortion.

Grounding, Bypassing, and Board Layout The MAX1437B requires high-speed board layout design techniques. Refer to the MAX1437B EV kit data sheet for a board layout reference. Locate all bypass capacitors as close as possible to the device, preferably on the same side as the ADC, using surface-mount devices for minimum inductance. Bypass AVDD to GND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $0.1 \mu \mathrm{~F}$ ceramic capacitor. Bypass OVDD to GND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $\geq 2.2 \mu \mathrm{~F}$ ceramic capacitor. Bypass CVDD to GND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $\geq 2.2 \mu \mathrm{~F}$ ceramic capacitor.
Multilayer boards with ample ground and power planes produce the highest level of signal integrity. Connect


Figure 9. Transformer-Coupled Input Drive
the MAX1437B ground pins and the exposed backside pad to the same ground plane. The MAX1437B relies on the exposed-backside-pad connection for a lowinductance ground connection. Isolate the ground plane from any noisy digital system ground planes.
Route high-speed digital signal traces away from the sensitive analog traces. Keep all signal lines short and free of $90^{\circ}$ turns.
Ensure that the differential analog input network layout is symmetric and that all parasitics are balanced equally. Refer to the MAX1437B EV kit data sheet for an example of symmetric input layout.

## Parameter Definitions

Integral Nonlinearity (INL)
INL is the deviation of the values on an actual transfer function from a straight line. For the MAX1437B, this straight line is between the end points of the transfer function, once offset and gain errors have been nullified. INL deviations are measured at every step and the worst-case deviation is reported in the Electrical Characteristics table.

## Differential Nonlinearity (DNL)

DNL is the difference between an actual step width and the ideal value of 1 LSB. A DNL error specification of less than 1 LSB guarantees no missing codes and a monotonic transfer function. For the MAX1437B, DNL deviations are measured at every step and the worstcase deviation is reported in the Electrical Characteristics table.

# Octal, 12-Bit, 50Msps, 1.8V ADC with Serial LVDS Outputs 

## Offset Error

Offset error is a figure of merit that indicates how well the actual transfer function matches the ideal transfer function at a single point. For the MAX1437B, the ideal midscale digital output transition occurs when there is $-1 / 2$ LSBs across the analog inputs (Figure 6). Bipolar offset error is the amount of deviation between the measured midscale transition point and the ideal midscale transition point.

## Gain Error

Gain error is a figure of merit that indicates how well the slope of the actual transfer function matches the slope of the ideal transfer function. For the MAX1437B, the gain error is the difference of the measured full-scale and zero-scale transition points minus the difference of the ideal full-scale and zero-scale transition points.
For the bipolar device (MAX1437B), the full-scale transition point is from 0x7FE to 0x7FF and the zero-scale transition point is from $0 \times 800$ to $0 \times 801$.

## Crosstalk

Crosstalk indicates how well each analog input is isolated from the others. For the MAX1437B, a 5.3 MHz , -0.5 dBFS analog signal is applied to 1 channel while a $24.1 \mathrm{MHz},-0.5 \mathrm{dBFS}$ analog signal is applied to another channel. An FFT is taken on the channel with the 5.3 MHz analog signal. From this FFT, the crosstalk is measured as the difference in the 5.3 MHz and 24.1 MHz amplitudes.

## Aperture Delay

Aperture delay ( $\mathrm{t}_{\mathrm{AD}}$ ) is the time defined between the rising edge of the sampling clock and the instant when an actual sample is taken. See Figure 10.

## Aperture Jitter

Aperture jitter (tAJ) is the sample-to-sample variation in the aperture delay. See Figure 10.

Signal-to-Noise Ratio (SNR)
For a waveform perfectly reconstructed from digital samples, the theoretical maximum SNR is the ratio of the full-scale analog input (RMS value) to the RMS quantization error (residual error). The ideal, theoretical minimum analog-to-digital noise is caused by quantization error only and results directly from the ADC's resoIution ( N bits):

$$
\mathrm{SNR} \mathrm{~dB}_{\mathrm{d}}[\max ]=6.02 \mathrm{~dB} \times \mathrm{N}+1.76 \mathrm{~dB}
$$

In reality, there are other noise sources besides quantization noise: thermal noise, reference noise, clock jitter, etc.
For the MAX1437B, SNR is computed by taking the ratio of the RMS signal to the RMS noise. RMS noise

\& $\angle \subset \downarrow \perp \mathbf{L} W$

Figure 10. Aperture Jitter/Delay Specifications
includes all spectral components to the Nyquist frequency excluding the fundamental, the first six harmonics (HD2-HD7), and the DC offset.

Signal-to-Noise Plus Distortion (SINAD)
SINAD is computed by taking the ratio of the RMS signal to the RMS noise plus distortion. RMS noise plus distortion includes all spectral components to the Nyquist frequency, excluding the fundamental and the DC offset.

## Effective Number of Bits (ENOB)

ENOB specifies the dynamic performance of an ADC at a specific input frequency and sampling rate. An ideal ADC's error consists of quantization noise only. ENOB for a full-scale sinusoidal input waveform is computed from:

$$
\mathrm{ENOB}=\left(\frac{\mathrm{SINAD}-1.76}{6.02}\right)
$$

Total Harmonic Distortion (THD)
THD is the ratio of the RMS sum of the first six harmonics of the input signal to the fundamental itself. This is expressed as:

$$
\mathrm{THD}=20 \times \log \left(\frac{\sqrt{V_{2}^{2}+V_{3}^{2}+V_{4}^{2}+V_{5}^{2}+V_{6}^{2}+V_{7}^{2}}}{V_{1}}\right)
$$

## Spurious-Free Dynamic Range (SFDR)

SFDR is the ratio expressed in decibels of the RMS amplitude of the fundamental (maximum signal component) to the RMS value of the next-largest spurious component, excluding DC offset. SFDR is specified in decibels relative to the carrier ( dBc ).

# Octal, 12-Bit, 50Msps, 1.8V ADC with Serial LVDS Outputs 

Intermodulation Distortion (IMD)
IMD is the total power of the IM2 to IM5 intermodulation products to the Nyquist frequency relative to the total input power of the two input tones $f_{1}$ and $f_{2}$. The individual input tone levels are at -6.5 dBFS . The intermodulation products are as follows:

- 2nd-order intermodulation products (IM2): $\mathrm{f}_{1}+\mathrm{f}_{2}$, $f_{2}-f_{1}$
- 3rd-order intermodulation products (IM3): $2 \times f_{1}-f_{2}$, $2 \times f_{2}-f_{1}, 2 \times f_{1}+f_{2}, 2 \times f_{2}+f_{1}$
- 4th-order intermodulation products (IM4): $3 \times f_{1}-f_{2}$, $3 \times f_{2}-f_{1}, 3 \times f_{1}+f_{2}, 3 \times f_{2}+f_{1}$
- 5th-order intermodulation products (IM5): $3 \times f_{1}-2$ $x f_{2}, 3 \times f_{2}-2 x f_{1}, 3 \times f_{1}+2 x f_{2}, 3 \times f_{2}+2 x f_{1}$

Third-Order Intermodulation (IM3)
IM3 is the total power of the 3rd-order intermodulation product to the Nyquist frequency relative to the total input power of the two input tones $f_{1}$ and $f_{2}$. The individual input tone levels are at -6.5 dBFS . The 3rd-order intermodulation products are $2 \times f_{1}-f_{2}, 2 \times f_{2}-f_{1}, 2 \times f_{1}$ $+f_{2}, 2 \times f_{2}+f_{1}$.

Small-Signal Bandwidth
A small -20.5 dBFS analog input signal is applied to an ADC so that the signal's slew rate does not limit the ADC's performance. The input frequency is then swept up to the point where the amplitude of the digitized conversion result has decreased by -3 dB .

Full-Power Bandwidth
A large -0.5 dBFS analog input signal is applied to an ADC, and the input frequency is swept up to the point where the amplitude of the digitized conversion result has decreased by -3dB. This point is defined as fullpower input bandwidth frequency.

## Gain Matching

Gain matching is a figure of merit that indicates how well the gain of all 8 ADC channels is matched to each other. For the MAX1437B, gain matching is measured by applying the same $5.3 \mathrm{MHz},-0.5 \mathrm{dBFS}$ analog signal to all analog input channels. These analog inputs are sampled at 50 Msps and the maximum deviation in amplitude is reported in dB as gain matching in the Electrical Characteristics table.

## Phase Matching

Phase matching is a figure of merit that indicates how well the phases of all 8 ADC channels are matched to each other. For the MAX1437B, phase matching is measured by applying the same $5.3 \mathrm{MHz},-0.5 \mathrm{dBFS}$ analog signal to all analog input channels. These analog inputs are sampled at 50 Msps and the maximum deviation in phase is reported in degrees as phase matching in the Electrical Characteristics table.

## Octal, 12-Bit, 50Msps, 1.8V ADC with Serial LVDS Outputs

Pin Configuration


For the latest package outline information and land patterns, go to www.maxim-ic.com/packages

| PACKAGE TYPE | PACKAGE CODE | DOCUMENT NO. |
| :---: | :---: | :---: |
| 68 TQFN | T6800-4 | $\underline{\mathbf{2 1 - 0 1 4 2}}$ |

## Octal, 12-Bit, 50Msps, 1.8V ADC with Serial LVDS Outputs

| REVISION <br> NUMBER | REVISION <br> DATE | PESCRIPTION <br> PHANES |  |
| :---: | :---: | :--- | :---: |
| 0 | $7 / 08$ | Initial release | - |
| 1 | $12 / 08$ | Corrected errors in the Internal Reference Mode and Gain Error sections. | 13,19 |

